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Abstract--Laminar two-phase flow due to convection and phase separation in a deep vertical cavity with 
a closed lower end and open upper end, submerged in a homogeneous mixture of gas with solid spherical 
particles is considered. Analytical expressions for the velocity profiles of each phase, as well as for the 
total mass and vertical heat fluxes in the two-phase mixture, are obtained and compared with the 
single-phase case. It is found that the velocity distribution in each phase as well as the direction and the 
magnitude of the total mass and vertical heat fluxes in the two-phase mixture are essentially controlled 
by a dimensionless parameter--the ratio of the relative velocity between the phases to the convection 
velocity in gas. 
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I. I N T R O D U C T I O N  

Natural convection in rectangular cavities has been investigated in numerous publications during 
the last two decades. Such practical problems as thermal insulation of walls and windows in 
buildings required an understanding of a heat transfer mechanism between the boundaries. 
Batchelor (1954) gave a theoretical description of the flow in a vertical cavity. His solution, applied 
to a fully developed stationary flow, gives a well-known antisymmetric cubic velocity profile with 
an upward flow in the hot wall region and downward flow in the cold wall region. This investigation 
was followed by many other, treating the problem of natural convection in vertical slots. For a 
historical survey see, for example, Chenoweth & Paolucci (1985). The main portion of these 
investigations is performed within the framework of the Boussinesq approximation, which implies 
that the ratio of the temperature difference between the walls to their sum is small. An 
approximation justified for a broad field of applications. 

Many areas of modern technology, however, such as chemical engineering, cooling of nuclear 
reactors, electronics etc., involve flows with large temperature differences. For such flows the 
Boussinesq approximation is not valid. Chenoweth & Paolucci (1985) investigated gas flows in 
vertical slots with large temperature differences between the walls, involving temperature- 
dependent viscosity and conductivity. They presented an analytical solution for the temperature 
and velocity profiles in the fully developed region of the flow at sufficient distances away from the 
ends of the cavity. 

Broad fields of applications, such as chemical engineering and reactor technology, include 
processes with flows of mixtures of several components, frequently gas and solid particles. The aim 
of the present work is to generalize the results of Chenoweth & Paolucci (1985) to a two-phase 
flow in a deep vertical cavity with a closed lower end and an open upper end, submerged in an 
infinite region containing a homogeneous mixture of gas with solid spherical particles of equal size. 
The mixture in the cavity is set into motion as a result of a combined effect of the phase separation, 
due to the density difference between the phases, and the thermal convection in the gas, due to 
the temperature difference between the boundaries of the vessel. These two effects are inter- 
dependent through the interfacial drag force between the components of the mixture. The 
complexities of the resulting two-phase flow pattern in the neighbourhood of each end of the cavity 
are beyond the scope of the present work, and the analysis here is restricted to a laminar, fully 
developed region of the flow, existing at distances sufficiently far from each end of the cavity and 
on a time scale which is small compared to the time taken to fill the whole vessel with sediment. 
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Analytical expressions for the temperature and velocity distribution in each phase over the cavity 
width are obtained both for the case of constant and temperature-dependent conductivity and 
viscosity and compared to the single-phase case. The mass and vertical heat fluxes in the mixture 
are then evaluated and the results discussed. 

2. F O R M U L A T I O N  

We consider the flow of a mixture in a deep vertical, parallel-plate cavity with a closed lower 
end and an open upper end. The cavity is submerged in an infinite region containing a 
homogeneous two-phase mixture of a gas with solid spherical particles of equal size, see figure 1. 
The mixture flow in the cavity is generated by buoyancy forces due to the temperature difference 
between the vertical boundaries, and due to the density difference between the phases. 

In the present work the mixture of gas and particles is treated as two superimposed continua. 
Such a description is based on models obtained by taking time averages (Ishii 1975) or volume 
averages (Nigmatulin 1979), or both (Drew 1971) of the local microscopic balance and constitutive 
equations for each constituent over regions that are large compared to a typical microstructural 
dimension of a mixture, e.g. solid particle size. The resulting balance equations for each phase are 
then formulated in terms of averaged field variables and are valid on our scale, which is large in 
comparison with dimensions of microstructure. The following investigation is an attempt to apply 
such a continuum two-phase model (Ishii 1975; Drew & Lahey 1979) to the flow of a gas-particle 
mixture in a deep laterally heated vertical cavity. 

The mixture is therefore treated as two interacting continua, described by means of the 
corresponding averaged field variables: volume fraction of the dispersed phase ~, phase velocities 
v~ and vL common temperature T, pressure p and the stress tensor of the continuous phase T,~. 
According to Ishii (1975), the stress tensor of the continuous phase consists of two parts: 

II 

The first part is related to the velocity gradients in the conventional manner for Newtonian fluids, 

' = 2/~d,~ + 22~,k, [21 ~" rk  
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Figure 1. Problem definition. 
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where d,k = 1/2(v,.k+ Vk.,- 2/3Viflrk) and t~rk = 1~3rift,,. (Note, that the symbol 2 will be sub- 
sequently used as the coefficient in the Stokes' drag force.) 

The second part of the stress tensor is related to the extra interfacial deformation tensor that 
arises from the averaging procedure. In the special case when one phase is dispersed, Ishii obtains 
the following expression: 

H # [(v d -- V~)(1 -- ct)., + (v~ -- v~)(1 -- a),~]. [3] 
z~k= 2(1--~)  

The extra interfacial deformation tensor is seen to be zero when ~ is constant, as will be the case 
here. 

In this specific flow situation where the dispersed phase consists of solid spherical particles of 
equal size, homogeneously distributed in the continuous carrier phase, the usually proposed form 
of the stress tensor for the dispersed phase (Ishii 1975; Drew & Lahey 1979; Drew 1983) becomes 
zero. This in general is an accepted assumption, consistent with neglecting the effects of 
particle-particle and particle-wall interactions. The details of the two-phase flow in the vicinity of 
the solid boundaries, where such effects become more significant, are beyond the scope of the 
present work. 

The next item of the employed continuum description of a mixture is the nature of the interaction 
force between the constituents. This force is often described as a sum of several forces acting on 
a single particle in a continuous flow field. Besides the Stokes' drag it may include the shear-lift 
force, due to the uniform shear field of the continuous phase (Saffman 1965), the virtual mass force 
(Zuber 1964) and the spin-lift force, induced by the inner rotation of a particle (Rubinow & Keller 
1961). Each of these forces, acting on a single particle is modified by its own correction factor, 
which accounts for the finite volume concentration of the dispersed phase. Since here we will 
assume no inner rotation of the particles and a quasi-steady, one-dimensional flow, the spin-lift 
and virtual mass forces will be zero. Also the shear-lift force is negligible, compared to the Stokes' 
drag under the present assumptions, as will be shown at the end of this section. 

We neglect therefore the shear-lift force in the first approximation. It should be mentioned at 
this point, however, that the shear-lift force acts in the direction transverse to the velocity difference 
between the phases. Incorporation of the shear-lift force in the momentum equations will thus not 
introduce significant changes in the vertical momentum balance. The horizontal momentum 
balance, however, will not be identically satisfied as will be the case here, since the shear-lift force 
will introduce horizontal particle and gas velocities, which in their turn will influence the particle 
concentration ~. Still, these are according to Di Giovanni & Lee (1974) secondary effects and may 
be considered as the next step in the analysis of the present problem. 

The fluid-solid interaction force per unit volume employed in the present study is thus of the 
form 

M~ = f(~t)rk [41 

and 

M~ = --f(a)Fk, [5] 

where Fk is the classical Stokes' drag on a single spherical particle, 

# 
Fk = 2 ~ (v~ - v~), [61 

where 2 = 4.5, # is the viscosity of the continuous phase and a is the particle radius. The correction 
factorf(~),  accounting for the finite volume fraction of the dispersed phase in the case of spherical 
particles homogeneously distributed in the continuous phase is of the form 

4 + 3(80t - 3~2) I/2 q- 3~t 
f(ct) = (2 - 3~t) 2 ct, [7] 

see Tam (1969). 
Further, we assume that the motion of both phases is laminar. This assumption introduces 

restrictions on the values of the Rayleigh and particle Reynolds numbers. The Rayleigh number 
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should be less than a certain critical value Rac at which the transition towards the multiple-cell 
motion occurs. 

It is well-known that when the value of  the Rayleigh number is <Rac, a fully developed 
one-dimensional, unicellular flow, parallel to the generators may exist at distances sufficiently far 
from each end of  the cavity. Chenoweth & Paolucci (1985) use the following expression for Ra¢: 

Rac ~ 8 x 103 Pr (1 - e3), [8] 

where Pr---~cp/k is the local Prandtl number. 
For large temperature differences between the boundaries, [8] gives an upper limit for the distance 

L between the walls of approx. 0.5 cm. For small temperature differences (e ~ 0.1), L ,-- 1 cm. 
Another assumption, used throughout the paper, is the assumption of the laminar motion of 

particles. We thus require that the particle Reynolds number Rep < 1, 

Rep - ga2y a ga37 
2v v = ~ < 1. [9] 

This restriction gives an upper limit of the particle radius. For  7 = 104, a < 1.6 × 10 5 m, and for 
= 103, a < 5.5 × 10-am. The lower limit of the particle radius is approx. 1 x 10-6m, since for 

the submicron particles the Brownian motion becomes important. 
We now formulate mass, momentum and energy balance equations for the mixture components 

under the adopted assumptions and approximations. We return again to the specific case of  a 
mixture flow in a deep narrow vertical cavity with closed lower end and open upper end, submerged 
in an infinite region containing a homogeneous mixture of gas with solid spherical particles of  equal 
size. The vertical y-axis is taken to coincide with the left vertical boundary, which is kept at the 
absolute temperature T 0. The absolute temperature of  the right boundary of  the cavity is T 1 
(Tt > To). The distance between the boundaries in the horizontal direction x is L, as sketched in 
figure 1. The mixture in the cavity is set into motion as a result of the phase separation, due to 
the density difference between the phases, and the thermal convection in the gas, due to the 
temperature difference between the boundaries. These two effects are coupled through the gas-solid 
interaction force arising from the relative motion of the phases. 

Under the present approximations the continuity equation for the dispersed phase 

~ + (:~vd),k = 0 

will in the region sufficiently far from each end of the cavity reduce to 

a t = O. [ 1 0 ]  

Momentum equations for each phase in the horizontal direction in the same region, where the flow 
of the phase is parallel to the generators, reduce to 

p x = 0 .  [11] 

According to Kynch (1952), the vertical sedimentation of solid particles may proceed in the three 
ways, depending on the shape of the curve of the total particle flow rate vs the volume fraction 
of particles. One of  the possible ways is when a direct shock from the initial value of  the 
concentration to the final settled value is formed at the interface of a mixture and sediment settled 
at the bottom of the vessel. In the remaining two cases a region with a nonuniform concentration 
of  the dispersed phase may be formed between the mixture with the initial concentration of particles 
at the top and the sediment at the bottom. In the present case of spherical particles in a gas with 
the initial concentration in the range 0 < ~ < 0.2 the first type of sedimentation will occur. 
Assuming further that the initial concentration of the dispersed phase is constant in the cavity, we 
obtain by means of [10] 

= const. [12] 

We will also consider the process of phase separation on a time scale which is small compared 
to the time required to fill the whole cavity with sediment. The process is thus regarded as a 
quasi-steady one and the momentum equations for each phase in the vertical direction are 
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simplified to 

0 = -ePdg -- ePy + f ( e ) 2  ~ (Vc -- Vd) 

and 

[13] 

/~ (Vc - Vd)- [14] 0 = --(1 -- ~)Pcg -- (1 -- ~)py + (1 -- ~)(IZVcx)x --f(~)2 ~5 

In the case of a quasi-steady, fully developed, homogeneous flow, when the particles and gas 
are in thermal equilibrium the mixture behaves as a pseudo gas with a modified value of the 
isentropic exponent, but in all other ways obeys all the well-known relations of thermodynamics, 
see Wallis (1969). The effect of mutual heat transfer in the horizontal direction is therefore to 
modify the thermal conductivity k in the energy equation to the value which accounts for the 
presence of the particles. 

The common temperature of gas and particles in the mixture will therefore be distributed in 
accordance with the energy equation for the pseudo gas, 

(kTx)x = 0, [15] 

where k is the thermal conductivity of the mixture. 
Two more relations are required to close the system of momentum and energy equations. 
The first of the closure relations is the equation of state for the gas. Batchelor (1954) argues that, 

since the pressure differences due to gravity are small compared to the absolute pressure, the 
variations in the gas density Pc are determined entirely by variations in the temperature T, 

pcT = const. [16] 

The second closure relation is a total volume flux condition. In the single-phase case Chenoweth 
& Paolucci (1985) use the integral condition of zero total mass flow through every cross-section 
of the enclosed slot to close the system of equations. This condition, however, will not hold in the 
present case of a sedimentation process in a two-phase mixture, contained in the cavity, due to 
a combined effect of phase separation and convection. Consider as a simple example the 
sedimentation of rigid particles in a vertical vessel filled with incompressible liquid and with no 
temperature difference between the boundaries. At the initial moment the particles are distributed 
homogeneously and the density of the mixture is therefore constant everywhere in the vessel. As 
was mentioned earlier, the sedimentation process forms three distinct regions in the vessel, 
containing dense sediment at the bottom, pure liquid at the top and suspension with constant 
particle concentration in the middle. Thus a constant density distribution at the initial moment 
changes to a heavy sediment region at the bottom, a light liquid region at the top and a 
homogeneous suspension region in the middle. The total volume occupied by these three regions 
is, however, equal to the volume occupied by the mixture initially. Consider now an arbitrary 
cross-section of the middle region, occupied by the suspension during the settling process. 
Sedimentation of particles thus results in a total nonzero mass transport in the downward direction 
through this section, whereas the total volumetric flow through the same cross-section of the 
mixture is zero, which is the case of so-called batch sedimentation (Wallis 1969). 

In our case the situation is partly similar to the one described above. The difference is that instead 
of an incompressible liquid we are dealing with a compressible gas and in addition to the effect 
of gravitational phase separation there is a coupled effect of thermal convection. However, since 
the pressure differences produced by gravity are small compared to the absolute pressure, the 
variations in gas density Pc will be determined by the variations in the temperature T, which is 
consistent with the equation of state [16]. Also, here the cavity is considered to be open at the upper 
end to an infinite region containing a homogeneous mixture with a constant volume fraction of 
particles, the same as in the cavity. Gas and particles transported in the upward direction will 
therefore be mixed with the homogeneous suspension in the infinite region. The volume of the 
mixture and sediment settled on the bottom of the cavity must, however remain unchanged 
throughout this quasi-stationary process. Also, here we are considering the midregion of the cavity, 
where the flow is independent of end effects. It will be shown in section 4 that the total mass flux 
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through every cross-section of the midregion of the cavity is always in the downward direction. 
The overall flow pattern may therefore be regarded as mass transfer from the infinite two-phase 
region to the lower end of the cavity, where the dense sediment is settled. An assumption of a zero 
total volumetric flux through every cross-section of the midregion of the cavity is thus consistent 
with the approximations introduced earlier. 

We therefore close the system of momentum and energy equations by the zero total volume flux 
condition for the mixture, 

f f  [avd + (1 - dx = 0. CX)Vc] [17] 

Consider next the set of dimensionless variables 

x 
~=Z '  

T 
0 = - -  

T' 

Pd 

Pc 
a 

L' 

2¢ =01-00 ,  

k 

[18] 

[19] 

[20] 

[Ell 

[22] 

[23] 

and 

v 
v* = ~, [24] 

where T, Pc, k and ~ (kinematic viscosity) are the average quantities (e.g. T = (To + Tj)/2]. 
We seek velocity and pressure in the form 

and 

ga 27 
v,~ = ~ Vd(~) , [251 

ga2~ 
vc = ~ V~(¢) [26] 

p = - ~ y ( l  + ?P) .  [27] 

The zero total volume flux condition, balance of momentum and energy thus take the following 
nondimensional form: 

o' [~Vd + (1 -- ~)Vc] d~ = O, [281 

0 = 1 - 7 + YP + Y f - # * ( V c  - Vd), [29] 
ct 

1 y62 f # * ( V  c -  I'd) [30] o= 1 - ~  +7P + - Z  (~*vo3~- 7 ~ - ~  

and 

(k*O¢)¢ = 0, [31] 
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here we have used, according to [16], 

p~ 7' 1 
Pc T 0' [32] 

Introducing a new nondimensional variable 

F = y6----~2 [33] 
2 

and eliminating I'd by means of [29], a system of equations for Vc, 0 and P is obtained: 

V~ f 1 - P  d~ =0.  [34] 

(#* V~)~ = -~ - 1 [351 

and 

(k*0¢)¢ = 0. [36] 

The velocity of the dispersed phase is then evaluated by means of [29]. 
We are assuming here that gas and particles are in thermal equilibrium. The thermal properties 

of the mixture will be the same as those of a pseudo gas with a modified value of the isentropic 
exponent. The values of the thermal conductivity and viscosity of the gas must be modified 
accordingly, to account for the presence of the particles. However, since we assume a homogeneous 
particle distribution in the cavity, the ratio of the local value of k to the average value ~ for the 
mixture is the same as for the pure gas. The same applies to the viscosity. We are therefore able 
to use the same relations for the nondimensional conductivity k* = kfli. and viscosity #* = #/~ as 
for the pure gas. Variation of the nondimensional conductivity and viscosity with temperature may 
therefore be obtained by means of Sutherland's laws for gases (White 1974): 

k* = (I + Sk)O 3/2 
0 + Sk [37] 

and 

p .  _ (1 + S,)03/2 
0 + S, [38] 

Values of the constants Sk and S, will be given in section 3. 
We now return for a moment to the beginning of this section and show by means of the 

dimensionless parameters introduced earlier, that the shear-lift force in the present flow situation 
is negligible compared to the Stokes' drag. According to Saffman (1965), 

Ls = 6.46/~a2 _Sv i/2 (vc - Vd), [39] 

where S is the velocity gradient of the fluid. The ratio of the shear-lift force to the Stokes' drag 
force is thus 

I S I 1/2 
L~ 6"46#a2v Ivc--Vdl (~),/2 (ga2yaL)~/2 

. . . .  (Repr)l/2 << 1 [40] 
6--~#a-~¢: ~d~ \ '~V V " 

3. VELOCITY PROFILES 

Similarly to Chenoweth & Paolucci (1985), we consider first the solution in the case of constant 
conductivity and viscosity, k* =/~* = 1. The constant property case may be applied to flows with 
small temperature differences between the boundaries. As the temperature difference increases the 
constant property assumption becomes less realistic and variations of the viscosity and conductivity 

M,F 14,~-F 



6 1 4  1~. APAZIDIS 

must be taken into account. The constant property case will, therefore, mainly serve as a reference 
solution for the greater temperature differences. Comparing this solution with the case of a 
temperature-dependent k* and/~* we will be able to highlight the influence of the conductivity and 
viscosity variations on various two-phase flow parameters. 

Solution of the energy equation [36] gives in this case a well-known linear distribution of the 
temperature between the vertical boundaries: 

0 = 1 + ~(2~ - 1), [41] 

see Batchelor (1954). 
Introducing [41] into [35] and solving [34] and [35] we obtain the velocity profile of  the continuous 

phase Vc and the pressure term P. The velocity of the dispersed phase is then evaluated by means 
of [29], see appendix A. The corresponding curves are displayed in figures 2-4. 

In the single-phase case, investigated in detail by Chenoweth & Paolucci (1985), the flow is 
regulated by means of thermal convection, due to the temperature difference between the 
boundaries. This is also an important effect in the case of  two-phase flow. In the present work, 
however, there is an additional coupled effect of the gravitational separation of the phases. These 
two effects influence one another through the fluid-solid interaction force. The relative significance 
of these two features of the flow is given by the value of the dimensionless parameter F, introduced 
in [33]. Consider the ratio of  the particle velocity in the stagnant fluid to the convection velocity 
in the gas, 

ga27 

Upart 2Y ga27 v 762 
. . . . .  = F, [42] 

v .... t¢ 2v gL22E 22E 
Ra- -  

L 

where Ra is the Rayleigh number and x is the thermal diffusivity, F is thus of  the same order of 
magnitude as the ratio of the particle velocity in the stagnant fluid to the convection velocity, when 

is in the range 0.1 ~< E ~< 1. Next we list a number of values of F = 762/2 and the corresponding 
values of ~ and 6 (2 = 4.5) that will be used subsequently throughout this paper: 

(1) F = 2 x  10 4, 7 =103, 6 = 1 0  3; 

(2) F = 2 x 10 -3, ~/ = 104, 6 = 10-3; 

(3) F = 10 -2, y = 5 × 103, 6 = 10 2; 

(4 )  F = 2 x 10 -2, ~/= 10 3, 6 = 10-2; 

(5) F = 0.2, 7 = 1 0 4 ,  6 = 10-2; 

(6) F = 2, 7 = 1 0 4 ,  t~ = 0.03333. 

Small values of F, e.g. F = 2 × 10 -4, 2 × 10 3 and F = 2 × 10 2, as in figure 2, indicate that the 
separation velocity of  the phases is small compared to the convection velocity. The effect of thermal 
convection is thus dominating at small values of F and the velocity profiles of the continuous phase 
reveal certain similarities to those of a single-phase case [see Chenoweth & Paolucci (1985) for large 
E-values] and reduce to the cubic velocity profile of Batchelor (1954) for small E-values. An 
important distinction between the present case and the one considered by Chenoweth & Paolucci 
is the assumption of zero total volumetric flux of  the two-phase mixture, discussed in section 2, 
in contrast to the assumption of zero mass flux for the closed slots used by Chenoweth & Paolucci. 
As a direct result of this, the zero velocity points remain relatively fixed in ~ as E increases, see 
figure 2(a), while those of Chenoweth & Paolucci translate nearly linearly with E toward the cold 
wall. These two different assumptions reduce, however, to a common form used for an 
incompressible fluid in the Boussinesq approximation valid at small temperature differences 
between the boundaries. The velocity profiles in the present work and those of Chenoweth & 
Paolucci reduce, therefore, to the antisymmetric cubic velocity distribution of Batchelor (1954). 

For small F-values the relative velocity between the phases is small, giving velocity profiles of 
the dispersed phase that are close to those of  the continuous phase. Furthermore, assumption of 
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constant viscosity results in a constant relative velocity between the phases over the cavity width. 
This means that the velocity profiles of the dispersed phase for various E-values are simply obtained 
by shifting the corresponding profiles by a value equal to the relative velocity beween the 
phases.This property will certainly not hold in the case of temperature-dependent viscosity. As will 
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be shown later,  the relat ive velocity and,  thus, the mutua l  in terac t ion  force between the phases  are  
s t rongly  dependen t  upon  var iable  viscosity.  

F o r  in te rmedia te  values o f  F,  e.g. F = 0.2, as in figure 3, bo th  the effects o f  phase  separa t ion  
and thermal  convec t ion  are  impor tan t .  The  velocity profiles o f  the con t inuous  phase  still resemble  
the s ingle-phase case. Here,  however,  the curves are more  asymmetr ic ,  indica t ing  that  the gas flows 
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in the upward direction over the entire cavity width for small temperature differences E, contrary 
to the single-phase case. The relative velocity between the phases becomes significant in this case 
and the particles flow in the downward direction, as shown in figure 3. By increasing the volume 
concentration of particles ct from 0.01, as in figure 3(a), to 0.2, as in figure 3(c), we increase the 
interaction force beween the phases and reduce the relative velocity. 
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Figure 4. Ve loc i ty  prof i les o f  the phases fo r  temperature- independent k *  and # * .  - -  ~ = 0.1, - - - -  
E = 0 . 3 ,  - - . - -  E = 0 . 5 ,  - - - - -  E = 0 . 7 ,  - - - - - -  E = 0 . 9 ,  r = 2 .  (a )  ~t = 0 . 0 l ,  (b)  ct = 0 . 1 ,  (c)  ~t = 0 . 2 .  
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For larger values of F the effect of the gravitational separation of the phases becomes 
dominating. For F = 2, as in figure 4, the flow of the phases is mainly controlled by the 
gravitational separation of the phases with an upward flow of gas and downward flow of particles. 
The curves for various E-values converge and the relative velocity between the phases increases. 
An increase in the volume concentration ~ further amplifies the effect of gravitational separation 
on the flow pattern. 

Next, we choose as a starting point for our calculations a more realistic, for the greater ~-values, 
assumption of temperature-dependent conductivity and viscosity varying in accordance with 
Sutherland's law [37] and [38]. For the purpose of comparison with the single-phase case we will 
use the same example as Chenoweth & Paolucci (1985), namely air with T = 300 K, Sk = 0.648 and 
S~ = 0.368. These values may be found in White (1974). 

The temperature distribution is no longer linear and is obtained by means of the energy equation 
[36] along with [37]. As suggested by Chenoweth & Paolucci (1985), we will use temperature 0 as 
an independent variable. The expression for the transverse coordinate ~ as function of 0 is given 
in appendix B and is the same as in the single-phase case. Further, using 

dVc dye dO 
- - -  [ 4 3 ]  

d~ dO d~ ' 

[34]-[38] and [29], we obtain expressions for Vd(0), Vc(O) and P, see appendix B. 
Variations of the dimensionless temperature and viscosity across the slot width are shown in 

figure 5 and are the same as in the single-phase case. Velocity profiles of the phases for various 
F-values are displayed in figures 6-8. 

For F = 2 x 1 0  - 4  the effect of thermal convection is dominating, the relative velocity between 
the phases is less significant and the velocity profiles of the continuous phase are similar in part 
to those of a single-phase case, see Chenoweth & Paolucci (1985). The zero velocity points show 
here a greater shift toward the cold wall with growing E-values than in the constant property case, 
see figure 6(a). This shift is nevertheless smaller than that of the single-phase case, as a result of 
the different assumptions, as discussed in section 2. Due to small values of the relative velocity, 
profiles of the dispersed phase are close to those of the continuous phase. As compared to the case 
of constant conductivity and viscosity, the spacing between the curves corresponding to different 
E-values here becomes independent of E, which is also true in the case of single-phase flow. In figure 
6(c), F = 2 x 10 2. The effect of the gravitational separation becomes somewhat greater than in 
the previous figures. The motion is still mainly controlled by thermal convection. Influence of the 
variable viscosity on the velocity of the dispersed phase becomes noticeable, especially for the 
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higher values of E. The relative velocity increases rapidly near the cold wall. This abrupt increase 
in the relative velocity in the vicinity of the cold wall is due to the rapid decrease of the 
dimensionless viscosity, which approaches zero with an infinite gradient as e approaches unity, see 
figure 5(b). 
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Figure 6. Velocity profiles of  the phases for temperature-dependent k* and/z*. E = 0. I, - - - -  ~ = 0.3, 
E=0.5 ,  E=0 .7 ,  ~=0 .9 ;  c t=0.1.  (a) F = 2 x  l0 -4, (b) F = 2 x l 0  -3, 

(c) F - - 2 x l 0  -2. 
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Figure 7. Velocity profiles of the phases for temperature-dependent k* and/~*. ~ = 0.1, - - - -  E = 0.3, 
--.-- E =0.5, ----- E =0.7, ------ E =0.9; f =0.2. (a) ~ = 0.01, (b) ct =0.1, (c) • =0.2. 

F o r  i n t e r m e d i a t e  v a l u e s  o f  F ,  e.g. F = 0.2, as  in  f igure  7, b o t h  t h e r m a l  c o n v e c t i o n  a n d  t he  

g r a v i t a t i o n a l  s e p a r a t i o n  a r e  e q u a l l y  i m p o r t a n t .  V e l o c i t y  p ro f i l e s  o f  t h e  c o n t i n u o u s  p h a s e  h e r e  a re  

m o r e  a s y m m e t r i c  t h a n  in t he  ca se  o f  c o n s t a n t  c o n d u c t i v i t y  a n d  v i scos i ty .  H e r e  we  o b t a i n  a 

u n i d i r e c t i o n a l  u p w a r d  gas  f low o v e r  a l m o s t  t he  e n t i r e  c a v i t y  w i d t h  fo r  ct = 0.1 a n d  ct = 0.2. A 
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downward flow of gas exists only in the narrow region in the vicinity of the cold wall for E > 0.4. 
The dispersed phase flows in the downward direction throughout the whole cavity. Because of the 
viscosity variation over the cavity, the velocity profiles of the dispersed phase are no longer 
obtained by a simple shift of the corresponding velocity profiles of the continuous phase in the 
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Figure 8. Velocity profiles of  the pha~s  for temperature-dependent k*  and  tz*. 
- - . - -  ~ = 0 . 5 ,  - - - - -  ~ = 0 . 7 ,  - - - - - -  

* * * I I I 

= O . I , - - - - E  =0 .3 ,  
E = 0 . 9 ,  r = 2 .  (a) ~ = 0 . 0 1 ,  (b) ~ = 0 . 1 ,  (c) • = 0 . 2 .  
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vertical direction. The relative velocity between the phases increases near the cold wall and 
decreases near the hot wall as the temperature difference between the boundaries grows. Growth 
of the relative velocity near the cold wall is, however, far more rapid than its decrease at the hot 
wall. This leads to an increasing asymmetry in the velocity profiles of the dispersed phase as E 
approaches unity, see figure 7. 

If the value of F is increased, e.g. to 2, as in figure 8, the character of the two-phase flow becomes 
dominated by the gravitational separation of the phases. This means that the continuous phase 
flows in the upward direction and the particles are raining down. The velocity profiles of the 
continuous phase become more and more E-independent and symmetric with a maximum shifting 
towards the middle position between the boundaries. Velocity profiles of the dispersed phase are, 
however, still asymmetric, mainly due to an abrupt increase in the relative velocity at the cold wall, 
with a growing temperature difference between the walls, see figure 8. 

4. MASS AND HEAT FLUXES 

Using the obtained velocity distributions it is now possible to evaluate mass and heat fluxes for 
each phase, as well as the total vertical mass and heat transfer in the mixture. 

We define the following dimensionless mass fluxes per unit volume of the flow field: 

dgd = CcpOvo = ~ ~c dGd [44] 

and 

dgc = (1 - ~ )p~v¢ = ga:7 Pc dG¢. [45] 

Integration over the cavity width gives 

;o' Go = ?c( lid d~ [461 

and 

f0 ~ P--~ d~. Gc = 7(1 -~t)  Pc Vd [47] 

Since 0 serves as an independent variable in the case of temperature-dependent properties, [46] 
and [47] are transformed into 

Go 7~ fO ~1 = - -  Vd(1 + Sk)03/2(Sk + 0) ' dO [48] 
el 0 

and 

by means of 

Gc - (1 - ~! f'|°' V~(I + Sk)O~/2(Sk + O)-' dO, 
C] ,,le o 

[49] 

d~ k dO (1 + Sk)O 3/2(0 + Sk)- ' 
= = dO. [50] 

C t Cj 

The total heat flux per unit volume of the two-phase flow is 

dq = dqa + dqc = apcvdT + (1 -- ot )pcv~T, [51] 

since Ty = 0. The total dimensionless heat flux in the mixture is therefore of the form 

ga27 ga2~ _ -[-7~ f ~ 
q = -~v ~ T ( Q o  + Qc) = ~ pcTI~-  Jo VoO(l + Sk)O3/E(sk + 0)-Id0 

L"I 0 

( 1 - - ~ )  101Vc(1 -J[- 8k)03/2( 0 J[- Sk)_ |d0 ] "  [52] 
+ cj d00 ] 
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Figure 9. Total mass flux vs scaled temperature difference between the boundaries. ~ = 0.01, - - - -  
~X =0 .1 ,  - - . - -  c( =0 .2 .  (a) F = 2  x 10 -4, (b) F = 2  x 10 -3, (c) F = I0 2, (d) F = 2  x 10 2, (e) F =0 .2 ,  

(f) F = 2. 

Mass and vertical heat fluxes are shown for various F-values as functions of  the scaled 
temperature difference E and the volume fraction of  the dispersed phase cc 

As already discussed, we use an assumption of the zero total volume flux in the present flow 
situation instead of  the zero mass flux assumption for the case of  single-phase flow in a closed slot 
used by Chenoweth & Paolucci (1985). 



624 N. APAZIDIS 

Figure 9 shows that the total mass flux is always negative (in the downward direction) and 
becomes insensitive to the temperature difference E for F />  2 × 10 -3.  Figure 10 suggests, on the 
other hand, that the magnitude of the mass flux is not simply increased by an increase in the volume 
fraction of the dispersed phase :~, but that it reaches a maximum at a value of ~ = 0.12. This is 
due to the fact that by increasing the volume fraction c¢ we increase the interaction force between 
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Figure 10. Total mass flux vs volume fraction of particles. - -  ~ = 0.1,  - - - -  E = 0.5,  - - . - -  ~ = 0.9.  
(a)  F = 2 × 10 -4, (b)  F = 2 x 10 -3,  (c) F = 10 -2, (d)  F = 2 x 10 2, (e) F = 0.2,  ( f )  F = 2. 
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the phases, which leads to a decrease in the relative velocity. Although the mass of the dispersed 
phase, which accounts for the dominating portion of the mass of the two-phase flow, is increased, 
the magnitude of the mass flux may be decreased as a result of retardation of the particle flow. 

Figures 11 and 12 display the mass flux of the gas as function of E and 0t for various F-values. 
It is seen that the direction of the flux is controlled by the value of F. The mass flux of the gas 
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Figure 11. G as  mass  flux vs scaled temperature  difference between  the boundaries .  - -  ~ = 0.01,  - - - -  
= 0 . 1 ,  - - . - -  ~e = 0 . 2 .  (a) F = 2  x 10 -4 , (b) F = 2  x 10 -~, (c) F = 10 -2 , (d) F = 2  x 10 -2 , (e) F = 0 . 2 ,  

(f)  r = 2. 
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. 2  

is entirely negative for the small values of  F, in either direction for the intermediate values, and 
becomes positive for F = 2. It decreases with growing E, increases with ~t or has a maximum at 

= 0.12 for large values of F. At large values of F the flow becomes dominated by the gravitational 
separation of the phases with particles raining down and gas flowing in the upward direction with 
a nearly parabolic velocity distribution which results in a positive mass flux of the gas. 
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It is noteworthy that although the total volume flux of the two-phase flow is always zero, the 
mass fluxes of each phase need not be and are not always in different directions. The mass flux 
of the gas is in the same downward direction as the mass flux of the particles for small values of 
F and for intermediate values at greater temperature differences, see figures 1 l(a~l) and 12(a-d). 
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Figure 13. Vertical heat flux vs scaled temperature difference between the boundaries. - -  = = 0.0l ,  - - - -  
~( = 0 . l ,  - - . - -  a = 0 . 2 .  (a) F = 2  x 10 -4, (b) F = 2  x 10 -3, (c) F = 10 -2, (d) F = 2  x 10 -2, (e) F = 0 . 2 ,  

(f) f = 2 .  
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Figure 14. Vertical heat flux vs volume fraction of particles. - -  ~ = 0.1,  - - - -  ~ = 0.5,  - - . - -  E = 0.9.  
(a)  F = 2 x  10 -4 , (b)  F = 2 x  10 -3 , (c)  F = I 0  -2, (d)  F = 2 x  10 -2  , (e) F = 0 . 2 ,  ( f )  F = 2 .  

This is possible due to the density variation of  the gas over the cavity width, with a downward 
heavy gas flow in the cold wall region and an upward light gas flow in the hot wall region. 

As is seen from figures 9-12, the mass flux o f  the gas is but a small fraction of  the total mass 
flux for F / >  2 x 10 -3. The mass flux o f  the dispersed phase is thus essentially represented by the 
total mass flux, except for F = 2 × l0 -4, and is therefore not presented here. 
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The total vertical heat flux of the two-phase flow as a function of E and a for various F-values 
is shown in figures 13 and 14. As can be seen, it may be positive as well as negative (in the upward 
or downward direction), whereas it is always positive for single-phase flow in a closed slot 
(Chenoweth & Paolucci 1985). In the present case the direction and magnitude of the heat flux are 
primarily controlled by F and secondarily by E and 0t. 

At small values of F, e.g. 2 x 10 -3 and 2 x 10 -3, the flow is controlled by the convection process 
in the mixture with insignificant relative velocities between the phases. The heat flux is mostly 
positive and increases with growing temperature difference E and volume fraction ct. 

At intermediate values of F, e.g. 10 -2 and 2 x 10 -2, both the effect of thermal convection and 
the gravitational separation are important. The heat flux may be in either direction, depending on 
the values of E and ~. It is still increasing with growing c, but reaches a minimum at a certain value 
of 0t, depending on c. 

At large values of F, e.g. 0.2 and 2, the flow becomes dominated by the gravitational separation 
of the phases, which gives entirely negative and E-independent heat fluxes. A minimum of the 
vertical heat flux (maximum magnitude) is reached at the value of ~t ~ 0.12. 

5. SOME GENERAL CONCLUSIONS 

The main result of the present investigation is that the flow pattern in each phase as well as the 
overall vertical mass and heat fluxes in the mixture are essentially controlled by a dimensionless 
parameter F-- the ratio of the relative velocity between the phases to the convection velocity in 
the gas. Specifically: 

(1) At small values of F the effect of thermal convection is dominating which results 
in a countercurrent flow of each phase with a nearly antisymmetric velocity 
distribution, which for the small temperature differences reduces to the well- 
known cubic velocity profile of Batchelor (1954). It is noteworthy that the heat 
and mass transfer in the mixture are in different directions in this case. The total 
mass flux is negative (directed downwards) and reaches a minimum (maximum 
magnitude) when the volume concentration of particles 0t ~ 0.12. The vertical 
heat flux of the mixture is positive (directed upwards). 

(2) At intermediate values of F, both the effect of thermal convection and phase 
separation are of importance. This gives various types of velocity profiles, 
distinct for each phase and increasingly asymmetric with growing F-values. The 
total mass flux is negative and becomes temperature independent. A minimum 
(maximum magnitude) of the mass flux is reached at ~t ~ 0.12. The vertical heat 
flux is mostly negative (directed downwards) and increases with growing 
temperature difference E between the walls. A minimum of the heat flux is 
obtained for various values of ~ depending on E. 

(3) When the values of F are large the mixture flow is dominated by the effect of 
phase separation. We thus obtain an upward flow gas with an almost parabolic 
velocity profile and a downward flow of particles with a strongly asymmetric, 
due to the viscosity variation, velocity distribution over the slot width. Mass and 
heat fluxes become entirely negative and insensitive to the temperature difference 
variations. Extreme values (negative minima) of the mass and heat fluxes are 
again reached at ~t = 0.12. 
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A P P E N D I X  A 

Constant Conductivity and Viscosity Case 

Solution o f  the energy equat ion [36] gives in this case a wel l -known linear t empera tu re  
distr ibution between the boundaries:  

0 --- 1 + e ( 2 ~  - 1). [A.I] 

In t roducing  [A.1] into [35] and integrat ing twice we express the velocity of  the cont inuous  phase 
as a funct ion o f  the transverse coordinate  ~, 

Vc(~) = 2 F - I  {E-2/4 (1 - E + 2E~) [In(1 - E + 2 ~ )  - 1] 

- -  [1 + ) , ( P  - ~)/(1 - ~)]~2/2 + c d  + c2}. [ A . 2 ]  

Constan ts  cl and c2 are then obta ined  by means  o f  the bounda ry  condit ions 

Vc(0) = V0(1) = 0, 

giving 

cl = [1 + v ( P  - ~)/(1 - ct)]/2 + E -2 {(1 + e)[1 - ln(1 + c)] + (1 - E)[ln(1 - E) - 1]}/4 [A.3] 

and 

cz = E-2(1 - e)[1 - ln(1 - E)]/4. [A.4] 

Finally, the pressure term P is given by the zero total  flux condi t ion [34], 

P = {E-3(1 + E)2[1/2 - In(1 + Q]/16 + E-3(1 - E)Z[ln(1 - e) - 1/2]/16 

+ E -2/4 -- [l -- 7~/(1 -- ~t)]/12 -- e -2(1 + e)[1 -- In(1 + E)]/8 

+ ~ -Z(l - E)[1 - In(1 - ~)]/8 + Fct~/(2f)}/{7/[12(l - ~)] + r~2/(,~f)}. [A.5] 

A P P E N D I X  B 

Variable Conductivity and Viscosity Case 

In this case we assume that  the nondimens ional  conduct ivi ty  k*  and viscosity #*  are functions 
o f  the t empera tu re  0 according to [37] and [38]. The  t empera tu re  distr ibution is then obta ined  by 
means  of  [36] and [37] and  is no longer linear: 

= (1 + Sk)/C~ [2S 3/2 arctan(O/Sk) ~/2 + 2S~/2(0/3 - Sk)] -- CJCl, [B. 1] 
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where  

a n d  

C 1 = (1 + Sk)[2S3~/2 arc tan(01/S, )  '/2 + 201/2 (0,/3 - Sk)] - c: [8.2] 

c2 = (1 + Sk)[2Sk ~/: arctan(Oo/Sk) '/: + 20o~/2(0o/3 -- S,)]. [a.3] 

T h e  f o r m  o f  [B. 1] sugges ts  the  use o f  0 as  a n  i n d e p e n d e n t  var iab le .  I n t r o d u c i n g  [37] a n d  [38] in to  
[35] a n d  in t eg ra t ing  wi th  respec t  to  0 we o b t a i n  the  ve loc i ty  o f  the  c o n t i n u o u s  p h a s e  as f unc t i on  
o f  t e m p e r a t u r e :  

Ve(O) = 2F -I(1 --~ Sk)2C/2/(1 "~ S u)~{2 + 2Sk[1 + y ( e  --  0~)/(1 --  ~)]} 

x [ f j (0 )  -- S~,/2f~(0)] - 2/311 + 7 ( e  - ~)/(1 - ~t)]f3(0) + c3f4(0) + c4]], [B.4] 

whe re  

f l  (0)  = 2/3 0 3/2 + 2(S~ - Sk)O i/2 _ 2(S~ - Sk)S],/2 arc tan(O/Sk)  1/2, 

f2(O) = (0 + SDarctan(O/Sk)  I/2 - (SkO) 1/2 + 2(S,  - SD.Iz t an  z dz,  

l 

where  z = a rc t an (O/SD 1/2 

f3(0)  = 2/5 05/2 + 2S~/2(S~ - S,)arctan(O/Sk) I/2 + 2(S,  -- Sk)O 1/2(0/3 - -  Sk) ,  

f4(0)  = 0 + (S, - Sk)ln(Sk + 0),  

c3 = - {2 + 2Sk[1 + r ( P  -- ~t)/(1 -- ~t)]}al + 2/311 + 7 ( P  - ~t)/(1 - ~t)]a2, 

c,  = {2 + 2 S d l  + r ( P  - a) / (1 - ~ ) ] } [ - f j ( 0 o )  + a,A(Oo)] 

+ 2/311 + ~,(P - ~)/(1 - a)][f3(0o) - a2A(0o)],  

al = [f~(00 -f~(0o)]/[f4(01 ) - f4 (0o ) ]  

and  

[e.5] 

[B.6] 

[B.7] 

[B.8] 

[B.9] 

[]3.1 o] 

[B.11] 

and  

16 = f4(01)  - f4 (0o) .  [B.  16] 

a2 = [f3(00 - f3(0o)] / [ f4(0 , )  - f4(0o)]. [B. 12] 
I t  is n o w  poss ib le  to  o b t a i n  an  expres s ion  fo r  the  p res su re  t e r m  b y  m e a n s  o f  [34]: 

P = (1 - ~){[(1 + SD/~' - S : t / ( 1  - ~ ) ] [ - I i  + a114 +f~(0o)15 - alf4(0o)Is] 

+ 1/3[1/r  - ~/(1 - ~)][I3 - a214 -f3(0o)15 + a2f4(0o)Is] 

+ 1/2(~tt~c1)2(1 + Sk) -2 /Oc ,~ , ) I6} / {Sk l i  - -  S k a l I  4 - -  Skfl(O0)I 5 + S,alf4(0o)I5 - 13/3 + a214/3 

+f3(Oo)ld3 - a2f4(Oo)Id3 + (1 - ~ ) ( ~ c l ) 2 ( 1  + Sk)-2/(f2)16}, [B. 13] 

whe re  

f0" 
/ j =  f : ( 0 )  d0, j = 1 . . . . .  4, [B.14] 

o 

/5 = 2S~/2[arctan(0,/SD I/~ - a rc tan(0o /SD I/~] + 201/2(01/3 - SD - 20~/2(0o/3 - SD [B.151 


